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The process of brain remodeling after stroke is time- and neural activity-dependent, and
the latter makes it inherently sensitive to behavioral experiences. This generally supports
targeting early dynamic periods of post-stroke neural remodeling with rehabilitative
training (RT). However, the specific neural events that optimize RT effects are unclear
and, as such, cannot be precisely targeted. Here we review evidence for, potential
mechanisms of, and ongoing knowledge gaps surrounding time-sensitivities in RT efficacy,
with a focus on findings from animal models of upper extremity RT. The reorganization of
neural connectivity after stroke is a complex multiphasic process interacting with glial
and vascular changes. Behavioral manipulations can impact numerous elements of this
process to affect function. RT efficacy varies both with onset time and its timing relative
to the development of compensatory strategies with the less-affected (nonparetic) hand.
Earlier RT may not only capitalize on a dynamic period of brain remodeling but also counter
a tendency for compensatory strategies to stamp-in suboptimal reorganization patterns.
However, there is considerable variability across injuries and individuals in brain remodeling
responses, and some early behavioral manipulations worsen function. The optimal timing
of RT may remain unpredictable without clarification of the cellular events underlying
time-sensitivities in its effects.
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INTRODUCTION
Stroke is a leading cause of chronic disability worldwide
(Johnston et al., 2009). Upper extremity (hand and arm) impair-
ments are especially prevalent lasting post-stroke disabilities (Lai
et al., 2002; Kwakkel et al., 2003). Compensatory reliance on the
nonparetic hand exacerbates impairments in the paretic side by
encouraging its disuse (i.e., “learned nonuse,” Taub et al., 2006).
Motor rehabilitative training (RT) approaches are the main tools
for treating these impairments, but they are typically insufficient
to normalize function. A better understanding of the mechanisms
of RT efficacy could help optimize its therapeutic potential.

Ischemic injury triggers prolonged periods of neuroanatom-
ical reorganization (Li and Carmichael, 2006; Wieloch and
Nikolich, 2006; Cheatwood et al., 2008). This reorganization
unfolds over months or longer, but is particularly dynamic early
after stroke (Anderson et al., 1986; Carmichael, 2006; Murphy
and Corbett, 2009). There are likely to be windows of opportu-
nity for driving functionally useful brain remodeling with RT,
as well as windows of vulnerability for promoting suboptimal
neural changes. When is early enough? When is it safe? What
should be done in these windows? The answers to these questions
remain unclear. Considerable variability in neural remodeling
time courses can be expected between individuals and across
brain regions (e.g., Hsu and Jones, 2006; Krakauer, 2007; Riley
et al., 2011). Furthermore, earlier is not better for everything.
Peri-infarct tissue is vulnerable to use-dependent excitotoxicity
in very early periods (Humm et al., 1998) and there is potential

to ingrain maladaptive behavioral strategies (Allred and Jones,
2008a,b; Jones and Jefferson, 2011).

Motor RT relies on mechanisms of skill learning, as does com-
pensatory learning with the nonparetic hand. In intact brains,
manual skill learning depends on practice-dependent synaptic
structural and functional reorganization of motor cortex (Monfils
et al., 2005; Kleim et al., 2006; Xu et al., 2009; Dayan and Cohen,
2011). These learning mechanisms are likely to interact with
regenerative responses to stroke, many elements of which are sen-
sitive to behavioral manipulations, as reviewed previously (Jones
and Adkins, 2010). Optimally timing and tailoring RT requires a
better understanding of how it interacts with post-stroke remod-
eling processes as they unfold over time. Below we review a frame-
work for understanding these interactions, progress in unraveling
them and ongoing knowledge gaps surrounding time-sensitivities
for experience-driven plasticity after stroke.

A DEVELOPMENTAL FRAMEWORK FOR UNDERSTANDING
SENSITIVE TIME WINDOWS AFTER STROKE
Greenough et al. (1987) introduced the term “experience-
expectant plasticity” to refer to the role of experience in brain
development during early sensitive periods. The developing brain
depends on external stimuli to shape neural circuitry patterns via
mechanisms of synaptic competition, in which the most effec-
tively activated neural connections are selectively maintained and
matured, and those less well activated are eliminated (Black et al.,
1997; Jones et al., 1998). A well-known example is the maturation

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 379 | 1

HUMAN NEUROSCIENCE

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnhum.2014.00379/abstract
http://community.frontiersin.org/people/u/126617
http://community.frontiersin.org/people/u/126582
http://community.frontiersin.org/people/u/116401
mailto:tj@austin.utexas.edu
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Allred et al. Experience and stroke plasticity

of ocular dominance columns in visual cortex, which is driven
by competitive activity of inputs from either eye. In the absence
of visual stimulation of one eye, thalamocortical afferents of the
remaining eye claim a disproportionate share of cortical terri-
tory, a pattern that is difficult to reverse (Hubel and Wiesel, 1965;
Berardi et al., 2003; Wright and Bourke, 2013). This developmen-
tal process is contrasted with “experience-dependent” plasticity,
i.e., the mechanism of learning. The two processes have over-
lapping cellular mechanisms, but vary in the magnitude and
persistence of brain changes instigated by them (e.g., Zuo et al.,
2005; Xu et al., 2009; Yu et al., 2013). In essence, experience-
expectant plasticity establishes the major connectivity patterns
of the brain and experience-dependent plasticity continuously
refines this connectivity across the lifespan.

Mechanisms of experience-dependent plasticity clearly con-
tribute to post-stroke brain reorganization (Williams et al., 2006;
Kerr et al., 2011) and to the efficacy of RT (Nudo, 2003; Adkins
et al., 2006), and they should be able to do so at any time. An unre-
solved question is to what extent early neural remodeling events
after stroke rely on experience-expectant mechanisms resem-
bling those of brain development. The regenerative responses to
stroke are highly sensitive to behavioral manipulations (Jones
and Adkins, 2010). The early pro-growth environment is remi-
niscent of development (Cramer and Chopp, 2000; Carmichael,
2006; Murphy and Corbett, 2009) and some neural restructuring
events resemble those typical of brain development (Jones and
Jefferson, 2011). To the degree that these responses also behave
in an experience-expectant manner, one would predict early peri-
ods after stroke in which it is not only (1) relatively easy to drive
neural remodeling into functionally beneficial directions using
manipulations of experience and neural activity, but also (2) easy
for any experiences that dominate the time window to stamp in
suboptimal or maladaptive circuitry patterns that are difficult to
reverse.

The first prediction above is reasonably supported, though
there are still knowledge gaps that hamper its usefulness for clin-
ical decisions, as described below. The second prediction has
received less attention, but its potential implications seem equally
important (Jones et al., 2013). Even with early interventions,
most of the experiences of stroke survivors occur outside of
the treatment context (Bernhardt et al., 2004, 2007; West and
Bernhardt, 2013), creating a potential for these experiences to
dominate reorganizational patterns. The existence of experience-
expectant mechanisms after stroke would also raise the possibility
of facilitating RT with treatments that prolong or reinstate these
mechanisms (e.g., as demonstrated in visual system by Morishita
and Hensch, 2008).

It is reasonable to draw upon brain development to under-
stand brain reorganization after stroke, as cellular mechanisms
for growing and re-growing neural connections overlap. However,
unlike development, the adult post-stroke brain must remodel in
a matrix of mature, dying, traumatized and dysfunctional struc-
ture. Stroke damages glia and vascular cells, as well as neurons,
and substantially alters the intricate interactions among them.
The creation of new stable patterns of neural connectivity after
stroke depends on the coordinated plasticity of neurons, glia and
vasculature.

NEURAL, GLIAL, AND VASCULAR REMODELING: MOVING
TARGETS FOR NEUROREHABILITATION
The loss of neurons in the core of ischemic injury leaves con-
nected regions partially denervated and efferent neurons stripped
of postsynaptic targets. The counteroffensive is the induction of a
growth permissive environment that promotes axonal sprouting,
synaptogenesis and dendritic remodeling (Kelley and Steward,
1997; Carmichael, 2006; Brown et al., 2010). Synapse densities
around an infarct decline and then recover over time to varying
degrees depending on proximity to the infarct core (Brown et al.,
2008; Sigler and Murphy, 2010). Remaining projections to den-
ervated regions sprout collateral axons and form new synapses
(Cotman and Anderson, 1988; McNeill et al., 2003; Dancause
et al., 2005). The axons that most prominently contribute to rein-
nervation tend to be the most abundant (Raisman and Field,
1990) and the most active (in firing) of the surviving projections
(Carmichael and Chesselet, 2002; Carmichael, 2003; Cesa and
Strata, 2005; Brus-Ramer et al., 2007). The latter property helps
make the remodeling processes sensitive to manipulations of neu-
ral activity (Brus-Ramer et al., 2007; Adkins et al., 2008; Carmel
et al., 2010) and behavior (Jones and Jefferson, 2011; Overman
et al., 2012). There are also persistent alterations in excitatory and
inhibitory activity patterns that present potential targets for com-
bining RT with other treatments (Carmichael, 2012; Zeiler et al.,
2013).

Post-ischemic reactions of neurons, astrocytes and vasculature
are tightly coordinated. For example, factors expressed by glia
and neurons stimulate the formation of blood vessels, and new
vessels release neural growth and survival factors (Wieloch and
Nikolich, 2006; Hermann and Chopp, 2012). Glia have diverse
roles in mediating neuroregenerative responses (Kelley and
Steward, 1997; Mack and Wolburg, 2013). Astrocytes are intri-
cately involved in synaptic plasticity (Murai et al., 2003; Haber
et al., 2006; Eroglu and Barres, 2010). Astrocytes release throm-
bospondins to promote synapse formation (Christopherson et al.,
2005; Eroglu et al., 2009), cholesterol to promote synapse mat-
uration (Mauch et al., 2001; Goritz et al., 2005) and D-serine
to regulate synaptic potentiation and depression (Panatier et al.,
2006). Astrocytic behavior is neural activity- and experience-
dependent (Jones and Greenough, 2002; Theodosis et al., 2008),
e.g., astrocytic reactions to denervation in motor cortex are ele-
vated by forced forelimb use (Bury et al., 2000). After cortical
infarcts, quantities of perisynaptic astrocytes and synapses vary
together with injury severity (Kim and Jones, 2010), and behav-
ioral outcome is altered by pharmacological manipulation of
astrocytic glutamate transport (Kim and Jones, 2013).

There are multiphasic vascular responses after stroke. Ischemic
stroke results in expanses of reduced cerebral blood flow (CBF)
and capillary density (Gjedde et al., 1990; Anderson et al., 1999;
del Zoppo and Mabuchi, 2003), as well as major elevations in
pro-angiogenic factors (Zhang and Chopp, 2002; Hayashi et al.,
2003; Carmichael, 2006; Beck and Plate, 2009), the levels of which
are predictive of functional outcome in stroke patients (Slevin
et al., 2000; Sobrino et al., 2007). Angiogenic microenviron-
ments also are supportive of neurogenesis (Ohab et al., 2006).
However, new vessels tend to be transient and leaky (Yu et al.,
2007; Hayward et al., 2011), and there is a variable degree of
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recovery of CBF and vessel densities in humans (Gjedde et al.,
1990; Krupinski et al., 1994; Szpak et al., 1999) and rodent models
(Marti et al., 2000; Biernaskie et al., 2001; Lin et al., 2008; Mostany
et al., 2011). Because sufficient blood flow is essential for activity-
dependent neural remodeling, RT efficacy could depend on the
success of vascular remodeling, and it might promote or acceler-
ate it depending on its timing. For example, sensory stimulation
starting 3 days after cortical ischemia promotes angiogenesis and
CBF recovery (Whitaker et al., 2007).

Vascular and glial responses to injury and to behavioral expe-
rience are potentially major sources of variability in RT effi-
cacy and its optimal timing. For example, time courses and
magnitudes of astrocytic and vascular reactions to injury are
altered with age (Gao et al., 2009; Brown and Thore, 2011;
Popa-Wagner et al., 2011), injury severity (Kim and Jones,
2010) and diabetes (Prakash et al., 2013; Tennant and Brown,
2013). Neuroregeneration time courses and magnitudes also
vary with age (Anderson et al., 1986), injury severity (Kim
and Jones, 2010), injury modality (Napieralski et al., 1996;
Phillips and Reeves, 2001; Voorhies and Jones, 2002; Jones
et al., 2012) and other conditions (Hermann and Chopp, 2012).
Thus, while there are many potential targets for treatment in
stages of neurogliavascular remodeling after stroke, there is also
much potential for variability in the optimal timing of these
treatments.

EARLIER CAN BE MUCH BETTER FOR REHABILITATIVE
TREATMENTS
Motor RT after stroke can drive structural and functional reor-
ganization of the injured motor cortex of humans (Taub et al.,
2003; Mark et al., 2006; Dong et al., 2007; Sterling et al., 2013)
and other animals (Jones et al., 1999; Biernaskie and Corbett,
2001; Frost et al., 2003; Dancause et al., 2005). In animal models,
training the paretic limb in skilled reaching after cortical infarcts
(Figure 1) increases its movement representation area (Castro-
Alamancos and Borrel, 1995; Nudo et al., 1996) and synaptic
densities (Adkins et al., 2008) in residual motor cortex of the
injured hemisphere. Blocking the reorganization prevents the
functional gains (Ramanathan et al., 2006). In the absence of RT,
representations of the paretic limb are reduced, even well outside
of infarct borders (Nudo et al., 1996).

Several studies support that RT is more effective if initiated
earlier after stroke. RT beginning within 1 week of motor cor-
tical infarcts in monkeys spares the paretic hand representation
in motor cortex compared with controls (Nudo et al., 1996), but
this effect is lost if training is delayed until 30 days post-infarct
(Barbay et al., 2006). In rats, greater improvements in the paretic
forelimb, and less compensatory reliance on the nonparetic limb,
result from RT initiated within 5, vs. 14 or 30, days post-ischemia
(Biernaskie et al., 2004). In humans, early (within 4 days post-
stroke) interventions are associated with reduced disability at

FIGURE 1 | Rodent models of upper extremity impairments after stroke

used to study forelimb experience effects on brain and behavioral

outcomes. Examples of behavioral manipulations in rats and mice include
(A) forelimb constraint, used to force greater use of the paretic limb, (B,C)

skilled reaching tasks, used to model both rehabilitative training (RT) focused
on the paretic limb and compensatory skill learning with the nonparetic limb
and, (D,E) pasta handling tasks, used to provide coordinated bimanual
experience. (F) Approximate motor cortical infarct location (dark oval) used in
several studies, as shown relative to head (yellow) and forelimb (green)

movement representation regions of motor cortex. The caudal forelimb area
(CFA) is in primary motor cortex and the rostral forelimb area (RFA) is in
premotor/supplementary motor cortex. Motor cortical samples showing (G)

vasculature (collagen IV immunolabeled), (H) a pyramidal neuron dendritic
arbor (Golgi stained) and (I) synapses surrounded by peri-synaptic astrocytic
processes (yellow highlights). The functional efficacy of motor RT has been
linked with the reorganization of movement representations in peri-infarct
motor cortex, but the influence of RT over time on the remodeling of
surviving neurons, glia and vasculature has not yet been well examined.
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the time of hospital discharge compared with later interventions
(Matsui et al., 2010). Patients receiving RT within 1 month post-
stroke have greater functional improvements and require shorter
RT duration to achieve them compared to those with delayed
RT (Salter et al., 2006). Constraint induced movement therapy
(CIMT), initiated within 3–9 months post-stroke enhances per-
formance in several fine motor tasks compared to delayed (>9
months) CIMT (Lang et al., 2013).

In the studies above, RT timing was a categorical variable
(earlier vs. later, Table 1), as is logical for determining if tim-
ing matters at all, but this does not lend precise information to
the question of when, exactly, is optimal for RT onset. We also
lack a precise understanding of the brain mechanisms of these
time sensitivities. Our present understanding of RT mechanisms
is based primarily on endpoint measures. We lack knowledge of
how RT interacts with neuroremodeling responses as they unfold
over time, and of the roles of vascular and glial plasticity in RT
efficacy.

EARLIER IS NOT BETTER FOR EVERYTHING
Schallert and colleagues were the first to discover that forced
use of a paretic limb, via constraint of the nonparetic limb,
can be detrimental to functional outcome if done too early
(Schallert et al., 2003). In rats, forelimb impairments are wors-
ened, and injury size increased, by constraining the nonparetic
limb for 2 weeks beginning immediately after motor cortical
lesions (Kozlowski et al., 1996; see also Risedal et al., 1999;

Farrell et al., 2001). If constraint is delayed for 7 days, there
is no detrimental effect (Humm et al., 1998). These constraint
manipulations were dissimilar to the clinical application of CIMT,
e.g., rats did not engage in RT and the constraint was con-
tinuous (24 h/day). In contrast, RT efficacy is improved by
its combination with less intensive constraint (8 h/day) begin-
ning 7 days after intracerbral hemorrhage in rats (DeBow et al.,
2003). In humans, high intensity CIMT when initiated very
early (∼10 days) after stroke lessens functional improvement
compared with lower intensity treatments (Dromerick et al.,
2009).

Early intense exercise also can also be detrimental in rodent
models of traumatic brain injury. Voluntary wheel running
enhances cognitive performance if initiated after an acute (0–6
days) post-injury time period. However, exercise during the acute
period impairs cognitive performance and prevents the nor-
mally seen up-regulation of BDNF (Griesbach et al., 2004, 2007;
Griesbach, 2011).

Together, these findings support that highly intense physical
activity very early after injury onset can be risky. We know of
no evidence that less intense activity is detrimental. However,
some types of RT might benefit from a delay, e.g., to allow
resolution of metabolic dysfunction or target specific remod-
eling stages. Consistent with this possibility, intense cognitive
training in rats is effective if it is initiated at 30 days, but
not at 10 days, after hippocampal system lesions (Mala et al.,
2012).

Table 1 | Time-sensitive effects of behavioral manipulations on functional outcome after brain damage in animal models.

Post-injury experience(onset time) Functional outcome References

Very early Early Delayed

Motor RT
(Day 5–7)

Nudo et al., 1996; Biernaskie et al., 2004

Motor RT (Day 14) Biernaskie et al., 2004

NPT
(Day 5–7)

Motor RT (Day17–22) Allred et al., 2005, 2010; Allred and Jones,
2008b; Kerr et al., 2013

NPT
(Day 5–7)

Allred et al., 2005, 2010; Allred and Jones,
2008b; Kerr et al., 2013; Maclellan et al.,
2013

Exercise
(Day 0)

Griesbach et al., 2004

Exercise (Day 14) Griesbach et al., 2004

Cognitive RT
(Day 7)

= Mala et al., 2012

Cognitive RT (Day 21) Mala et al., 2012

CNP
(immediate)

Kozlowski et al., 1996; Humm et al., 1998

CNP
(≥ Day 7)

= Kozlowski et al., 1996; Humm et al., 1998

CNP + motor RT
(Day 7)

DeBow et al., 2003

Onset time is relative to the time of injury. Behavioral manipulations continued for days to weeks after onset. Functional outcome direction is relative to no-behavioral-

manipulation-controls with the same injury. RT, rehabilitative training; NPT, nonparetic limb training; CNP, constraint of the nonparetic limb.
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TIMING-DEPENDENCIES—EFFECTS OF LEARNING TO
COMPENSATE WITH THE NONPARETIC LIMB
The typical response to upper extremity impairments is to learn
to rely on the better functioning limb to perform daily activi-
ties. This compensatory strategy contributes to learned nonuse of
the paretic side (Taub et al., 2006) and, because it begins early
after stroke, it is also likely to interact with neural remodeling
events. We’ve studied this in rodents with motor cortical infarcts,
using training on reaching tasks to examine effects of skill learn-
ing with either forelimb (Jones et al., 2013). Skill training of the
nonparetic forelimb (NPT) increases dendritic growth in the con-
tralesional cortex, but this appears not to benefit the paretic limb
(Jones and Jefferson, 2011). NPT also exacerbates disuse of the
paretic forelimb, impairs the efficacy of subsequent paretic limb
RT (Allred et al., 2005, 2010; Kerr et al., 2013) and reduces RT-
driven neuronal activation of peri-lesion cortex (Allred and Jones,
2008a,b). Thus, NPT alters a neural substrate for RT efficacy.
Maclellan et al. (2013) found that paretic limb function was wors-
ened even when tested 30 days after an earlier period of NPT.
Bilateral and unskilled limb use are not detrimental to paretic
limb function, but learning new unimanual skills with the non-
paretic limb is detrimental, at least after motor cortical infarcts
(Allred and Jones, 2008a).

The influence of the nonparetic limb could vary with infarct
territories. The disruptive effects of NPT depend on contrale-
sional motor cortex and its transcallosal projections. They are
blocked by callosal transections and absent after bilateral motor
cortical lesions (Allred et al., 2010). Thus, injuries that leave
little remaining territory for transcallosal projections are poten-
tially immune from maladaptive effects of compensating with the
nonparetic limb.

These findings suggest that experiences of the nonparetic body
side may contribute to abnormal interhemispheric interactions
after stroke (Murase et al., 2004; Calautti et al., 2010). They
also indicate that RT efficacy can vary, not only with its timing
after stroke, but also its timing relative to the development of
compensatory skills with the nonparetic body side.

CONCLUSIONS
There are clearly early sensitive periods after stroke for the
influence of RT and other behavioral experiences on functional
outcome. It seems reasonable to assume that the early dynamic
period of neural remodeling contribute to these time-sensitivities,
but the remodeling process is complex and multiphasic, and the
events or stages within it that are most important for RT efficacy
have yet to be identified. For example, RT efficacy might benefit
from coinciding with early stages of axonal sprouting, so that it
shapes patterns of synaptic re-connectivity and effectively com-
petes with maladaptive compensatory strategies in doing so. It
could also depend on whether it is timed to coincide with stages
of new vessel formation and/or stabilization, so that it can bene-
fit from blood flow recovery or help promote it. These and other
possibilities have yet to be directly tested, but it is feasible to do
so in animal models of chronic stroke (Figure 1). It is also pos-
sible that, once events that contribute to heightened sensitivity
to RT are identified, imaging or other assays could be used to
reveal them in clinical populations. This could be essential to

efforts to optimize RT, because the cellular conditions that create
sensitive windows are likely to vary in time and magnitude with
brain region, age, injuries and premorbid conditions. An “early”
that is reliably best for RT in a reasonable portion of the clinical
stroke population could be elusive in the realm of time, as mea-
sured by hours and days, but there is potential for it to be found
within stages of sequential brain events. Knowledge of the events
that create sensitive windows for experience-driven plasticity after
stroke also could lead to treatments that promote these windows
when they are deficient or reopen them after they have passed.
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